paintistanbul
TURKC. AT
CONGRESS

Use of SNPs with Controlled Size \& Shape for Enhanced Surface Hydrophobicity \& Hardness for Coil Coating Applications

Şevval Sulubaş

OUTLINE

* Introduction
* Materials \& Method
* Characterization \& Testing
* Findings
* Conclusion
* References

INTRODUCTION

Organic coatings are used mainly for protection and decoration

Coatings used in high speed lines to coat coils (metals shaped into foils and winded as a roll)

INTRODUCTION

- Substrate: HDG or Aluminium
- Coating Line Speed: $100 \mathrm{~m} / \mathrm{min}$ (curing at $240^{\circ} \mathrm{C}$ in 20-30 seconds)
- Dry Film Thickness: 5 micron primer +20 micron topcoat (in general)

Application Areas of Coil Coatings

paintistanbul
TURKCCAT
CONGRESS

ChemMedia

INTRODUCTION

INTRODUCTION (Hydrophobic Coatings)

Hydrophobic surfaces has good water repellency and provide excellent properties such as:
> Decreasing corrosion rate, easy to clean, self-cleaning, self healing properties etc.

AIM OF THE STUDY

Synthesis of nano-inorganic particles to use in enhancing the hydrophobicity \& hardness of coil coating surface.

HOW?

Creating roughness on the surface
paintistanbul

INTRODUCTION
 (Hydrophobic Coatings)

Wetting

- It is strong indicator for describing the interfacial relationships btw L \& S \& G.
- Liquid molecules interact more strongly with solid surface than the liquid.

Fig 4. Schematic diagram of interfacial tension in vapor/liquid/solid system (Wang et al., 2020)
paintistanbul

INTRODUCTION
 (Hydrophobic Coatings)

BOSAD 20
BOYA SANAYICLEFI DERNELS
paintistanbul
TURKCCAT

extremely poor wettability
(super-hydrophobic)
ChemMedia

INTRODUCTION
 (Hydrophobic Coatings)

Fig 5. Different wetting states (AkzoNobel Kemipol)

paintistanbul TURKCCAT CONGRESS

INTRODUCTION (Hydrophobic Coatings)

Wenzel's
state

Classie's
state

Transitional state btw
Wenzel and Classie

"Lotus"
state
$\cos \Theta_{\text {rough }}=r \cos \Theta_{\text {smooth }} \quad \cos \Theta_{m}=r \cos \Theta_{Y}$
r : roughness factor;
$\mathbf{r}=\mathbf{1}$ for smooth surface,

$$
r=\frac{\text { Actual surface area }}{\text { Planar surface area }}
$$

$\mathbf{r}>1$ for rough surface
paintistanbul
TURKCNAT

MATERIALS \& METHOD

Synthesis \& Characterization of SNP

- Synthesis of silica by sol-gel / Stöber method and TEOS
- Characterization of SNP by SEM

| | | | |
| :--- | :---: | :---: | :---: | :---: |
| Water | NH4OH \& | Mixing for | |
| TEOS | 2 h | Centrifuge | Drying |

Dispersion of SNP in coil coating

- Addition of NSP to PE coating mixture as a filler and dispersing.
- Characterization of coating mixture (Rheology, PSD)

Characterization of Coating

- Curing the coating for 40 sec at $240^{\circ} \mathrm{C}$ and quenching
- Mechanical tests
- Surface characterization by CA \& Surface energy measurements, SEM, AFM
NSP into

coating \quad\begin{tabular}{c}
Ball mill

process

\quad

Preparing

coated

panels
\end{tabular}

Both monosize and multisize silica particles were added to coating mixture separately.
paintistanbul
TUAKCCAT
CONGRESS

CHARACTERIZATION \& TESTING

Monosize silica particles

* Synthesis of Stöber Silica Particles
* Effect of TEOS Concentration

Bi-modal silica particles (Seed Addition / Seeded Growth)

BOSAD
paintistanbul
TURKCCAT
CONGRESS

CHARACTERIZATION \& TESTING (Synthesis of Stöber Silica Particles)

Table 1. SEM images of silica particles synthesized with different batches after 2 h and 24 h of synthesis

* Perfect spherical SNPs with $500-550 \mathrm{~nm}$
* Repeatability \& reproducibility for small \& large scale samples
* Obtaining same particles after 2 h and 24 h at the beginning of reaction

CHARACTERIZATION \& TESTING

Monosize silica particles

* Synthesis of Stöber Silica Particles
* Effect of TEOS Concentration

Bi-modal silica particles (Seed Addition / Seeded Growth)

CHARACTERIZATION \& TESTING (Effect of TEOS Concentration)

Table 2. Effect of TEOS concentrations

Parameters	Value
TEOS (mol/L)	$0.0625 \mathrm{M}, 0.125 \mathrm{M}, \mathbf{0 . 2 5 ~ M}$, $0.50 \mathrm{M}, 1 \mathrm{M}$
Ethanol (mol/L)	12.14 M
$\mathrm{H}_{2} \mathrm{O}(\mathrm{mol} / \mathrm{L})$	11.67 M
$\mathrm{NH}_{3}(\mathrm{~mol} / \mathrm{L})$	1.09 M

paintistanbul TURKCCAT CONGRESS

CHARACTERIZATION \& TESTING (Effect of TEOS Concentration)

Table 3. SEM images of effect of TEOS concentrations

CHARACTERIZATION \& TESTING (Effect of TEOS Concentration)

Table 4. SEM images of effect of TEOS concentrations

CHARACTERIZATION \& TESTING

```
Monosize silica particles
* Synthesis of Stöber Silica Particles
* Effect of TEOS Concentration
```

Bi-modal silica particles (Seed Addition / Seeded Growth)

CHARACTERIZATION \& TESTING (Seed Addition / Seeded Growth)

CHARACTERIZATION \& TESTING (Seed Addition / Seeded Growth)

Table 5. Seed: Classic Stöber SNPs and their different growth solutions

CHARACTERIZATION \& TESTING (Seed Addition / Seeded Growth)

Seed: Classic Stöber SNPs \& growth solution with Silica D method

Particles with 200 nm smaller than the initial seed size. This indicates that new reactions were still ongoing, and a gradual addition of TEOS was necessary instead of a pulse addition.

CHARACTERIZATION \& TESTING (Seed Addition / Seeded Growth)

Preparing stock solution of SNPs

CHARACTERIZATION \& TESTING (Seed Addition / Seeded Growth)

Table 7. SEM of growth solutions (75 mg seed)

TEOS/EtOH ratio: 1/10

Addition rate: $1 \& 8 \mathrm{ml} / \mathrm{min}$
Seed amount: 75 mg Stöber SNPs
TEOS molecules started generating smaller nanoparticles around 500 nm instead of diffusing through the seed particles for growth. Therefore, overnight duration was required to complete the reaction and diffusion processes.
paintistanbul

CONGRESS

CHARACTERIZATION \& TESTING (Seed Addition / Seeded Growth)

TEOS/EtOH ratio: 1/10
Addition rate: $1 \& 8 \mathrm{ml} / \mathrm{min}$
Seed amount: 150 mg Stöber SNPs
Rate of $\mathbf{8 ~ m l} / \mathbf{m i n}$: more equal size distribution

CHARACTERIZATION \& TESTING (Seed Addition / Seeded Growth)

Table 9. SEM of $100 \mathrm{ml} \& 1 \mathrm{~L}$ growth solutions (150 mg seed)

TEOS/EtOH ratio: 1/10

Addition rate: $8 \mathrm{ml} / \mathrm{min}$

Seed amount: 150 mg Stöber SNPs

Both 100 ml and 1.5 L solutions to control reproducibility

CHARACTERIZATION \& TESTING (Coating Studies)

Monosilica Addition to Topcoat

Bi-modal silica Addition to Topcoat

CHARACTERIZATION \& TESTING (Coating Studies - Monosilica Addition)

Table 10. SEM of monosilica added coating samples

similar images with 25% added SNPs

CHARACTERIZATION \& TESTING (Coating Studies - Monosilica Addition)

Contact Angle Measurements

Table 11. CA for $20 \& 10 \mu \mathrm{~m}$ films

Loading	Monosize 20 mikron	Monosize 10 mikron
45\%	113.61	111.90
40\%	113.54	110.80
35\%	112.00	109.50
30\%	110.50	105.42
25\%	107.60	107.34
20\%	92.00	92.71
15\%	87.66	87.25
10\%	86.32	84.2
5\%	85.45	83.50
0\%	82.20	82.20

Table 12. Roughness Parameters \& Actual Contact Angle

Sample	Projected Surface Area (μ / m^{2})	Textured Surface Area (μ / m^{2})	Roughness Parameter	Measured Contact Angle $\left({ }^{\circ}\right)$	Actual Contact Angle (${ }^{\circ}$)
45\%	25.00	28.81	1.15	113.61	117.49
40\%	25.00	28.98	1.16	113.54	117.58
30\%	25.00	29.35	1.17	110.5	114.28
20\%	25.00	28.25	1.13	92.00	92.26
10\%	25.00	25.52	1.02	86.32	86.24
$\cos \Theta_{m}=r \cos \Theta_{Y}$			$=\text { Actual surface area }$		

paintistanbul
TUAKCCAT
CONGRESS

CHARACTERIZATION \& TESTING (Coating Studies - Monosilica Addition)

Obtaining 90° between 15-20 \%
Not dramatically increasing after loading of 25\%

Maximum obtained CA: 113.61° at 45%

CHARACTERIZATION \& TESTING (Coating Studies - Monosilica Addition)

Mechanical Tests

Table 13. Pencil hardness results of both $20 \mu \mathrm{~m}$ and $10 \mu \mathrm{~m}$		
Sample	Results of $\mathbf{2 0}$ micron	Results of $\mathbf{1 0}$ micron
$0-35 \%$	2 H	2 H
$40-45 \%$	3 H	3 H

Fig 8. Scratch resistance results of 25% and 30% monosize silica added samples respectively
paintistanbul

CONGRESS

CHARACTERIZATION \& TESTING (Coating Studies)

Monosilica Addition to Topcoat

Bi-modal silica Addition to Topcoat

BOSAD

CHARACTERIZATION \& TESTING (Coating Studies - Bi-modal Silica Addition)

Table 14. AFM \& SEM results of bi-modal SNPs added coating samples

Table 15. CA for $20 \& 10 \mu \mathrm{~m}$ films

Load	$\begin{gathered} \text { Bi- } \\ \text { modal } \\ 20 \mu \mathrm{~m} \end{gathered}$	$\begin{gathered} \text { Bi-modal } \\ 10 \mu \mathrm{~m} \end{gathered}$	Table 16. Roughness Parameters \& Actual Contact Angle					
40\%	116.70	111.50	Sample	Projected Surface Area (μ / m^{2})	Textured Surface Area (μ / m^{2})	Roughness Parameter	Measured Contact Angle (${ }^{\circ}$)	Actual Contact Angle (${ }^{\circ}$)
35\%	104.30	114.30						
30\%	108.40	110.50	40\%	25.00	44.13	1.77	116.70	142.48
25\%	107.90	109.90						
			30\%	25.00	42.64	1.71	108.40	122.57
20\%	106.10	106.40						
15\%	87.90	90.40	20\%	25.00	38.85	1.55	106.10	115.53
10\%	88.30	88.50	10\%	25.00	25.96	1.04	88.30	88.24
5\%	88.20	89.70						
0\%	82.20	82.20					by Artkim Gr	

CHARACTERIZATION \& TESTING (Coating Studies - Bi-modal Silica Addition)

Contact Angle Measurements

Obtaining 90° between $10-15 \%$

Maximum obtained CA: 116.7° at 40%

Maximum CA: 142.48° by considering roughness parameter

Fig 9. Contact Angle vs Silica Loading \%
paintistanbul

CHARACTERIZATION \& TESTING (Coating Studies - Bi-modal Silica Addition)

Fig 10. Scratch resistance results of std and 40% bimodal silica added samples for both $10 \& 20 \mu \mathrm{~m}$.

Mechanical Tests
Table 17. Pencil hardness results of both $20 \mu \mathrm{~m}$ and $10 \mu \mathrm{~m}$

Sample	Results of 20 micron	Results of $\mathbf{1 0}$ micron
$0-20 \%$	2 H	2 H
$20-40 \%$	3 H	3 H

Bi-modal silica particles have more effect on improving the scratch resistance of the surface than mono-size SNPs.

FINDINGS

Mono (550 nm) and bi-modal (550-1200 nm) nano silica particles were synthesized and employed as additives to increase the hardness and contact angle simultaneously in commercial coil coatings.

CONGRESS

FINDINGS

The CA value of standard coat was 82°. It was increased to 113.61° with 45% monosized silica addition.

Monosized silica nanoparticles (35\%) resulted in a surface hardness of 2 H .
Increasing the loading to 45% improved the surface hardness to 3 H .
40% addition of monosize silica was necessary to achieve a pencil hardness of 3 H .

FINDINGS

Highest CA value achieved was 116.7° with addition of 40% bi-modal nano silica particles.

Incorporating the roughness parameter implies an effective CA value of 140°.
20% addition of bi-modal silica was sufficient to achieve a surface hardness of 3 H .

CONCLUSION

Addition of silica nano particles simultaneously improves hardness and surface hydrophobicity in coil coating applications.

Bi-modal silica nano particles results in better contact angle and surface hardness performance compared to mono-modal particle size distribution.

ACKNOWLEDGEMENT

I would like to thank the following people, without whom I would not have been able to complete this research.
Izmir Institute of Technology, especially to my supervisors Prof. Dr. Mehmet Polat \& Prof. Dr. Hürriyet Polat
Akzonobel Kemipol - Coil Coating R\&D Team and Laboratory Team, especially to İlkin Ece Altaş, Yağız Uysal, Hakan Ayyıldız, Ecem Tarancı, Cemre Kocahakimoğlu, Ender Kara, Gülçin Koşan

Izmir Institute of Technology, TAM Members
Kansai Altan-Physicochemistry Laboratory Team
And my biggest thanks to my family for all the support you have shown me through this research.

REFERENCES

AkzoNobel Kemipol, Internal Documents
Alessi, A., Agnello, S., Buscarino, G., \& Gelardi, F. M. (2013). Raman and IR investigation of silica nanoparticles structure. Journal of Non-Crystalline Solids, 362(1), 20-24. https://doi.org/10.1016/j.jnoncrysol.2012.11.006

Bai, Y., Zhang, H., Shao, Y., Zhang, H., \& Zhu, J. (2021). Recent progresses of superhydrophobic coatings in different application fields: An overview. Coatings, 11(2), 1-30. https://doi.org/10.3390/coatings11020116

Bailey, J. K., \& Mecartney, M. L. (1992). Formation of colloidal silica particles from alkoxides. Colloids and Surfaces, 63(1-2), $151-161$. https://doi.org/10.1016/0166-6622(92)80081-C

Bari, A. H., Jundale, R. B., \& Kulkarni, A. A. (2020). Understanding the role of solvent properties on reaction kinetics for synthesis of silica nanoparticles. Chemical Engineering Journal, 398(March), 125427. https://doi.org/10.1016/j.cej.2020.125427

Branda, F., Silvestri, B., Luciani, G., \& Costantini, A. (2007). The effect of mixing alkoxides on the Stöber particles size. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 299(1-3), 252-255. https://doi.org/10.1016/j.colsurfa.2006.11.048

REFERENCES

Busquets, J., Peláez, N., Gil, M., Secanella, L., Ramos, E., Lladó, L., \& Fabregat, J. (2016). Is Pancreaticoduodenectomy a Safe Procedure in the Cirrhotic Patient? Cirugía Española (English Edition), 94(7), 385-391. https://doi.org/10.1016/j.cireng.2016.01.002
Bogush, G., Tracy, M., \& Zukoski, C. (1988). Preparation of monodisperse silica particles: Control of size and mass fraction. Journal of NonCrystalline Solids, 104(1), 95-106. https://doi.org/10.1016/0022-3093(88)90187-1

Bogush, G., \& Zukoski, C. (1991). Uniform silica particle precipitation: An aggregative growth model. Journal of Colloid and Interface Science, 142(1), 19-34. https://doi.org/10.1016/0021-9797(91)90030-c

Chakraborty, D., Dingari, N. N., \& Chakraborty, S. (2012). Combined effects of surface roughness and wetting characteristics on the moving contact line in microchannel flows. Langmuir, 28(48), 16701-16710. https://doi.org/10.1021/la303603c

Chang, S. M., Lee, M., \& Kim, W. (2005). Preparation of large monodispersed spherical silica particles using seed particle growth. Journal of Colloid and Interface Science, 286(2), 536-542. https://doi.org/10.1016/j.jcis.2005.01.059

Chen, S. L., Dong, P., Yang, G. H., \& Yang, J. J. (1996a). Characteristic aspects of formation of new particles during the growth of monosize silica seeds. Journal of Colloid and Interface Science, 180(1), 237-241. https://doi.org/10.1006/jcis.1996.0295
paintistanbul
TURKCCAT
CONGRESS

REFERENCES

Tunçgenç, M., (2004). Boya Teknolojisine Giriş
Saarimaa, V., Markkula, A., Juhanoja, J., \& Skrifvars, B. J. (2015). Improvement of barrier properties of Cr-free pretreatments for coil-coated products. Journal of Coatings Technology and Research, 12(4), 721-730. https://doi.org/10.1007/s11998-015-9663-6

Stöber, W., Fink, A., \& Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 26(1), 62-69. https://doi.org/10.1016/0021-9797(68)90272-5

Völz, H. G. (2001). Industrial color testing: Fundamentals and techniques. Wiley-VCH Verlag GmbH.
Wang, J., Wu, Y., Cao, Y., Li, G., \& Liao, Y. (2020). Influence of surface roughness on contact angle hysteresis and spreading work. Colloid and Polymer Science, 298(8), 1107-1112. https://doi.org/10.1007/s00396-020-04680-x

Yilgör, I., Lgor, S. Y., Lgor, E. Y., Yilgör, E., Soz, C. L., \& Söz, Ç. K. (2016). Superhydrophobic polymer surfaces: Preparation, properties and applications.

Zeno W. Wicks, J., Jones, F. N., Pappas, S. P., \& Wicks, D. A. (2007). Organic coatings: Science and technology. John Wiley \& Sons.
Zhang, Y., Cao, M., Yao, Z., Wang, Z., Song, Z., Ullah, A., Hao, H., \& Liu, H. (2015). Effects of silica coating on the microstructures and energy storage properties of BaTiO3 ceramics. Materials Research Bulletin, 67, 70-76. https://doi.org/10.1016/j.materresbull.2015.01.056
paintistanbul
TURKCCAT
CONGRESS

