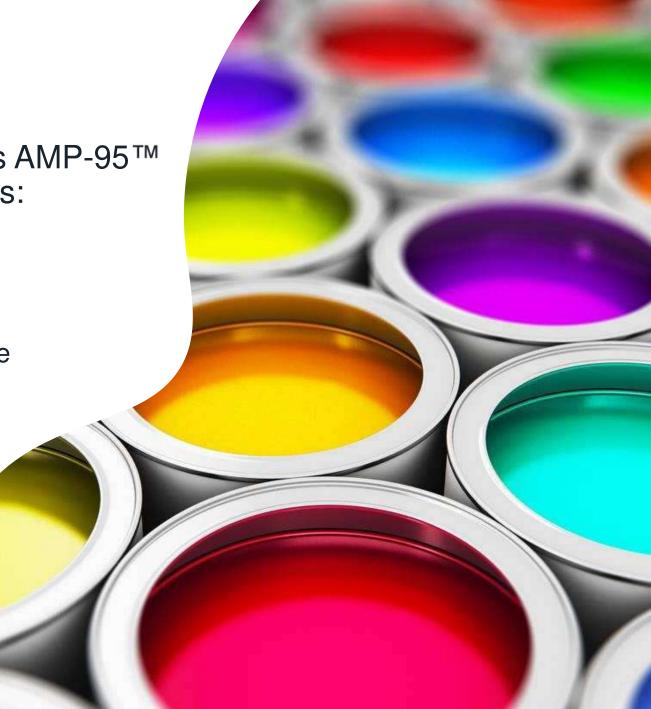


PAINTS AND COATINGS

Leveraging the Use of Alkanolamine Additives During Pigment Grinding to Improve the Performance of Waterborne Coatings

### Multifunctional ANGUS Solutions for Reducing VOC across Multiple Applications


| Architectural<br>Decorative Paints            | AEPD <sup>™</sup> VOX 1000 as a multifunctional wetting agent for no-VOC formulations                                                               |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Solvent-borne Alkyd<br>Paints                 | Replacement of solvents by up to 20%wt replaced by water or NIPAR S-10 <sup>™</sup>                                                                 |
| Waterborne Direct-To-<br>Metal (DTM) Coatings | ANGUS amino alcohols enable the development of high-performance<br>alternatives to solvent-based coatings                                           |
| Non-VOC Organic<br>Pigment Dispersions        | ANGUS multifunctional additives enhance stability and dispersion performance in no-emission tinting systems                                         |
| Waterborne Pigment<br>Slurries                | ANGUS amino alcohols enable higher solid content (e.g., higher TiO <sub>2</sub> loading), reducing overall CO <sub>2</sub> footprint of products    |
| Indoor Air Quality<br>Improvement             | TRIS AMINO <sup>™</sup> Crystals provide high-efficiency scavenging of VOC pollutants such as formaldehyde in deco paints and air filtration media. |

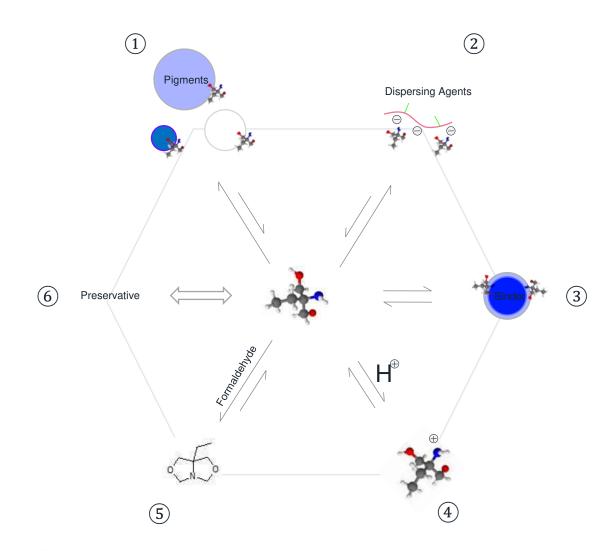


### Summary

The use of Advancion ingredients such as AMP-95<sup>™</sup> in waterborne organic pigment dispersions:

- Enables a significant increase of the solid content of pigment, while decreasing the amount of conventional dispersing agent.
- Increases the storage stability of waterborne dispersions.
- Reduces the mechanic effort during grinding.
- Supports the optimization of organic pigment dosage



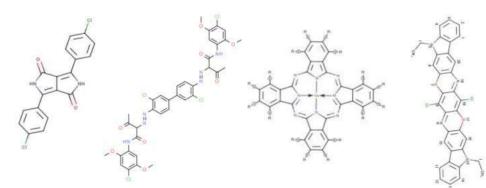


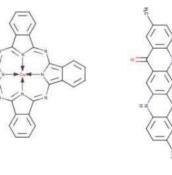

### **Products for Paints, Coatings and Inks**

| For Water-bas                                                                                                                                                                      | sed Systems                       | For Solvent-based Systems                                                                    |                                                                                           |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|
| Amino Alcohols                                                                                                                                                                     | Carbodiimides                     | Nitroparaffin Solvents                                                                       | Oxazoline Surfactants                                                                     |  |  |  |
| AMP-95™<br>AEPD™ VOX 1000<br>DMAMP-80™<br>TRIS AMINO™ Crystals<br>DMMOPA™ - NEW!                                                                                                   | ZOLDINE™ XL-29SE<br>Cross-Linking | NIPAR™ S-10<br>NIKANE™ MS 3000<br>NIKANE™ MS 5000<br>AVANTANE™ PA 4000<br>FLEXITANE™ CA 6000 | ALKATERGE™ E<br>ALKATERGE™ T<br>Emulsification<br>Pigment Dispersion<br>Corrosion Control |  |  |  |
| Multifunctionality<br>Pigment Dispersion<br>Neutralization<br>pH Buffering<br>Corrosion Control<br>Preservative Synergy<br>Formaldehyde Scavenging<br>Color Acceptance<br>Solvency |                                   | Solubilization<br>Controlled Drying<br>Substrate Wetting<br>Pigment Dispersion               | Oxazolidine Additives<br>ZOLDINE™ MS-PLUS<br>Moisture Scavenging                          |  |  |  |



### **Maximizing Multifunctional Performance**





| Effect       | Cause                       | Dispersion  | Let Down |
|--------------|-----------------------------|-------------|----------|
| Dispersion   | 12                          | Х           |          |
| Stability    | 1234                        | Х           | Х        |
| Buffer       | 4                           |             | Х        |
| Remediation  | 5                           |             | Х        |
| Biostability | 6                           | Х           | Х        |
| 0,1%         | 0,5                         | %           | 1,0%     |
|              | ility<br>uffer<br>stability | Remediation |          |



### **Overview of Organic Pigments Evaluated**

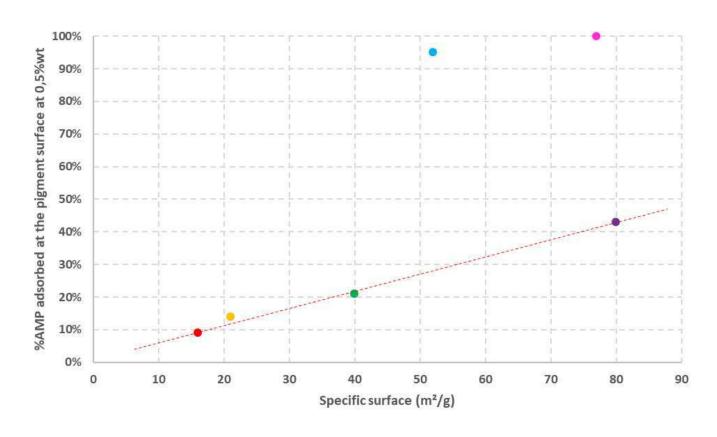
| Pigment<br>CAS No.<br>CI                                       | PR 254<br>84632-65-5<br>56110<br>Diketopyrrolo- | PY 83<br>5567-15-7<br>21108 | PG 7<br>1328-53-6<br>74260 | PV 23<br>21247-95-3<br>51319 | PB 15:3<br>147-14-8<br>74160 | PR 122<br>980-26-7<br>73915 |
|----------------------------------------------------------------|-------------------------------------------------|-----------------------------|----------------------------|------------------------------|------------------------------|-----------------------------|
| Chemical class                                                 | pyrrole                                         | Diarylide                   | Phtalocyanine              | Dioxazine                    | Phtalocyanine                | Quinacridone                |
| Density<br>Oil absorption (mL/100g)<br>specific surface (m²/g) | 1,55<br>51<br>16                                | 1,51<br>66<br>21            | 2,05<br>50<br>40           | 1,49<br>78<br>80             | 1,61<br>54<br>52             | 4,45<br>65<br>77            |





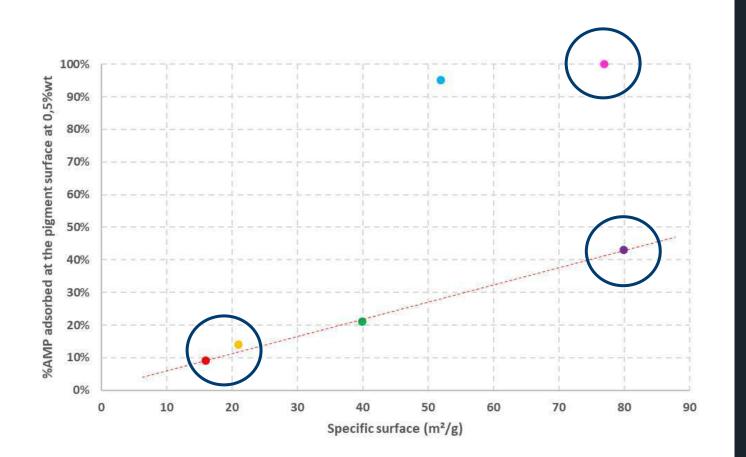


### Evaluation of the Interaction Between AMP and Organic Pigments




| Pigment<br>CAS No.<br>Cl                                       | PR 254<br>84632-65-5<br>56110<br>Diketopyrrolo- | PY 83<br>5567-15-7<br>21108 | PG 7<br>1328-53-6<br>74260 | PV 23<br>21247-95-3<br>51319 | PB 15:3<br>147-14-8<br>74160 | PR 122<br>980-26-7<br>73915 |
|----------------------------------------------------------------|-------------------------------------------------|-----------------------------|----------------------------|------------------------------|------------------------------|-----------------------------|
| Chemical class                                                 | pyrrole                                         | Diarylide                   | Phtalocyanine              | Dioxazine                    | Phtalocyanine                | Quinacridone                |
| Density<br>Oil absorption (mL/100g)<br>specific surface (m²/g) | 1,55<br>51<br>16                                | 1,51<br>66<br>21            | 2,05<br>50<br>40           | 1,49<br>78<br>80             | 1,61<br>54<br>52             | 4,45<br>65<br>77            |

# Adsorption and Specific Surface


Slurry of organic pigments in water with 0,5%wt / OPwt of AMP

Linear correlation between Specific surface and adsorption, excepted for PB 15:3 and PR122

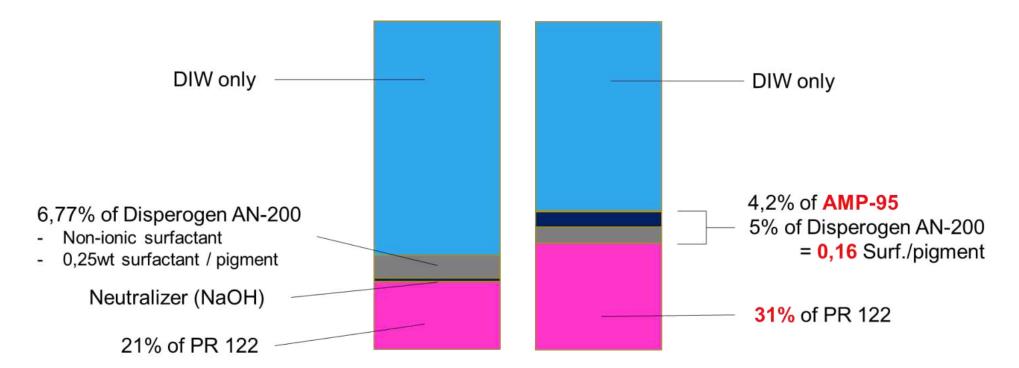


Advancion

| Pigment<br>CAS No.<br>Cl | PR 254<br>84632-65-5<br>56110<br>Diketopyrrolo- | PY 83<br>5567-15-7<br>21108 | PG 7<br>1328-53-6<br>74260 | PV 23<br>21247-95-3<br>51319 | PB 15:3<br>147-14-8<br>74160 | PR 122<br>980-26-7<br>73915 |
|--------------------------|-------------------------------------------------|-----------------------------|----------------------------|------------------------------|------------------------------|-----------------------------|
| Chemical class           | pyrrole                                         | Diarylide                   | Phtalocyanine              | Dioxazine                    | Phtalocyanine                | Quinacridone                |
| Density                  | 1,55                                            | 1,51                        | 2,05                       | 1,49                         | 1,61                         | 4,45                        |
| Oil absorption (mL/100g) | 51                                              | 66                          | 50                         | 78                           | 54                           | 65                          |
| specific surface (m²/g)  | 16                                              | 21                          | 40                         | 80                           | 52                           | 77                          |



# Selection of 4 pigments for the grinding process


**PR254**, **PY83**, **PV23**, and **PR122** have been selected in order to cover a wide range of AMP adsorption.

Advancion

### **Optimized Experimental Protocol**



### **Formulation Selection**



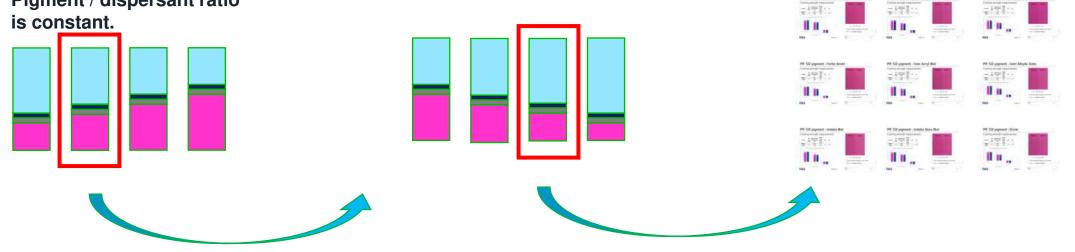
Formulation in water only 50% replacement of conventional dispersing agent with AMP Side-by-side comparison with the same viscosity => Optimization of the solid content



### **Optimizing the Waterborne Dispersion with AMP**

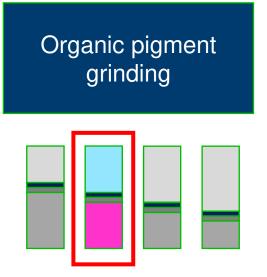
Organic pigment grinding

Optimization of the %SCg during grinding (similar particle size distribution and viscosity)


### **Pigment / dispersant ratio**

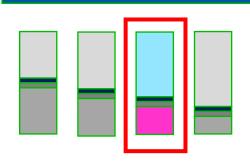
Dilution of the waterborne dispersion

Optimization of the final **%SCf** (equivalent viscosity)


**Commercial paint** tinting

Tinting of 9 commercial white paints with the same %wt of PR 122






### **Optimizing the Waterborne Dispersion with AMP**



High viscosity does not allow experimental evaluations

### Dilution of the WB dispersion



Initial and 4W@45°C performance:

- Particule size distribution
- Viscosity
- pH

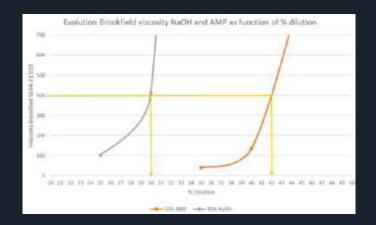
### Commercial paint tinting



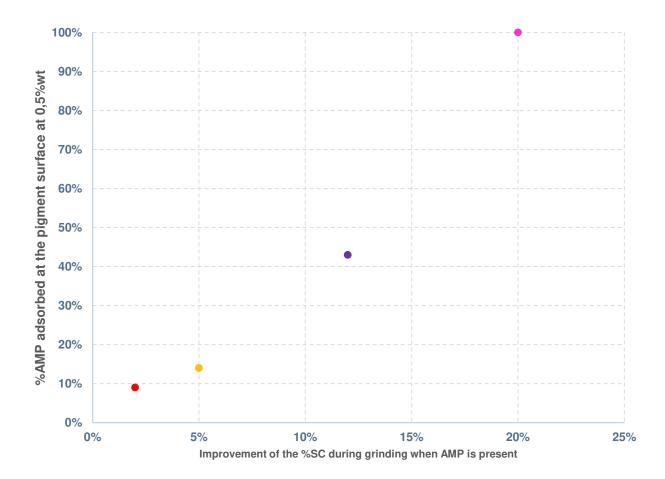

Initial and 4W@45°C performance:

- Particule size distribution
- Viscosity
- pH
- Colorimetric tests



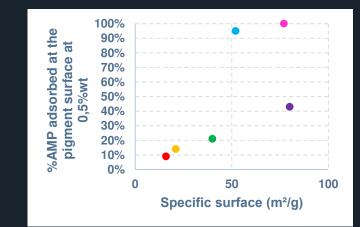

### Comparison of 4 Pigments PV23 PR122 PR254 PY83



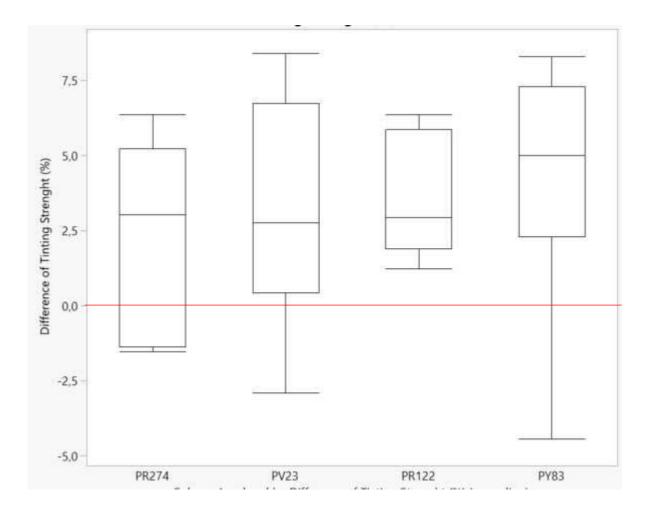



### **Optimizing Solid Content**

When using AMP to replace 50% of the conventional dispersing agent (Disperogen AN200), the solid content of the dispersion can be increased for an equivalent viscosity

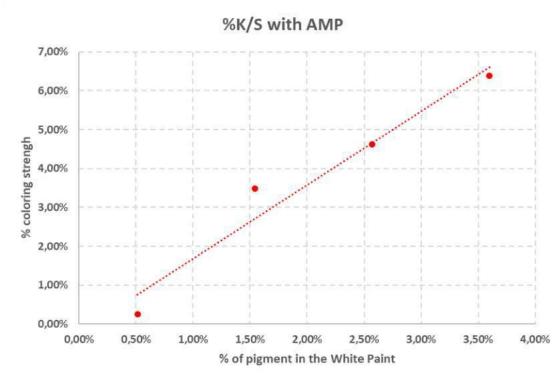


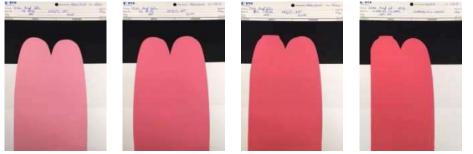

Advancion




### **Optimizing Solid Content**

Solid correlation between the adsorption of AMP at the pigment surface and the improvement of the solid centent during the grinding (or the drop of viscosity).





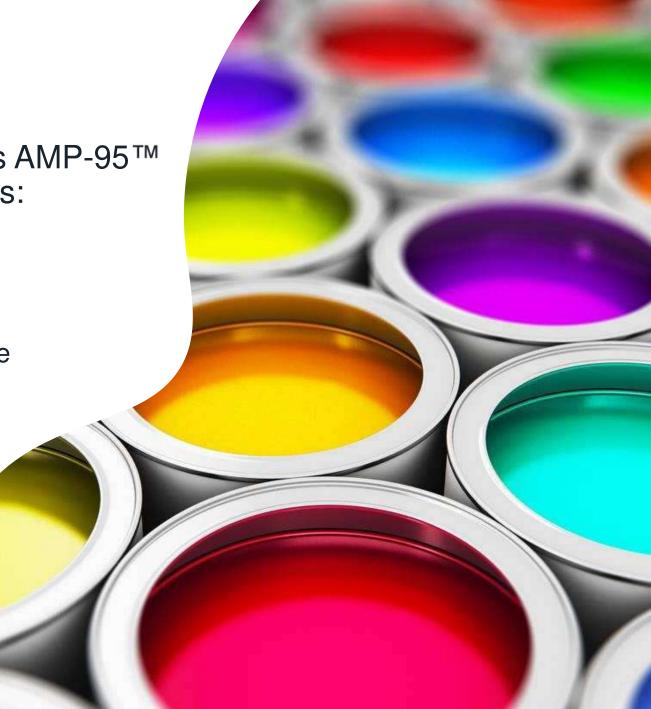

### Overview of Tinting Strength







### Illustration of Pigment Savings with AMP / PR254


### Waterborne organic pigment dispersion with AMP



### Summary

The use of Advancion ingredients such as AMP-95<sup>™</sup> in waterborne organic pigment dispersions:

- Enables a significant increase of the solid content of pigment, while decreasing the amount of conventional dispersing agent.
- Increases the storage stability of waterborne dispersions.
- Reduces the mechanic effort during grinding.
- Supports the optimization of organic pigment dosage





### **Advancion Technical Contact**

**Romain Severac, PhD** Global Technical Director – Paints & Coatings

E <u>rseverac@advancionsciences.com</u> O +33 1 34 233 171 M +33 6 74 196 498

Samples, Technical literature, and more at advancionsciences.com





# Illustration of the Experimental Protocol



### **Control Versus 50% Replacement with AMP-95**

| Formulation        | 22YFPR254-01 | 22YFPR254-02 | 22YFPR254-03 | 22YFPR254-04 | 22YFPR254-05 |
|--------------------|--------------|--------------|--------------|--------------|--------------|
| P/D                | 4.38         | 4.38         | 4.38         | 4.38         | 4.38         |
| Pigment            | 45           | 50           | 55           | 60           | 65           |
| Dispersogen AN 200 | 6.43         | 7.14         | 7.86         | 8.57         | 9.29         |
| AMP95              | 5.41         | 6.02         | 6.62         | 7.22         | 7.82         |
| Sol NaOH 25%       |              |              |              |              |              |
| Agitan DF 6681     | 0.3          | 0.3          | 0.3          | 0.3          | 0.3          |
| Water              | 42.86        | 32.17        | 30.23        | 23.91        | 17.59        |
| Total              | 100.00       | 100.00       | 100.00       | 100.00       | 100.00       |
| Formulation        | 22YFPR254-06 | 22YFPR254-07 | 22YFPR254-08 | 22YFPR254-09 | 22YFPR254-10 |
| P/D                | 4.38         | 4.38         | 4.38         | 4.38         | 4.38         |
| Pigment            | 45.00        | 50.00        | 55.00        | 60.00        | 65.00        |
| Dispersogen AN 200 | 12.84        | 14.27        | 15.70        | 17.12        |              |
| AMP95              |              |              |              |              | ļ.           |
| Sol NaOH 25%       | 9.71         | 10.80        | 11.88        | 12.96        |              |
| Agitan DF 6681     | 0.30         | 0.30         | 0.30         | 0.30         | 0.30         |
| Water              | 32.15        | 24.63        | 17.12        | 9.62         |              |
| Total              | 100.00       | 100.00       | 100.00       | 100.00       | 100.00       |

Replacement of 50% dispersant (AN200) with AMP compared with the guideline formulation

**PR 254** 

Same level of dispersant as the guideline formulation – Same molar quantity as AMP

٠



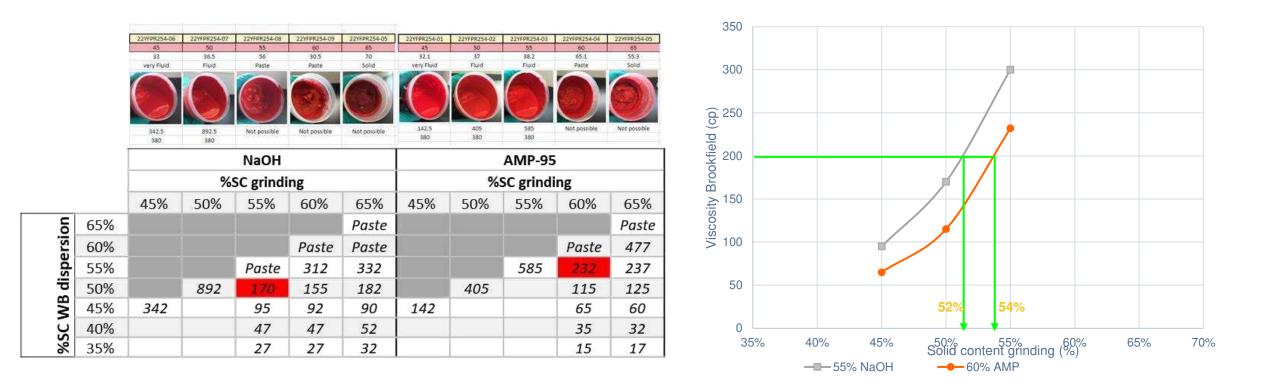
#### PR 254

### **Visual Aspect After Grinding**

|                                | 22YFPR254-01 | 22YFPR254-02 | 22YFPR254-03 | 22YFPR254-04 | 22YFPR254-05 |
|--------------------------------|--------------|--------------|--------------|--------------|--------------|
| Solid content (%)              | 45           | 50           | 55           | 60           | 65           |
| Grinding temperature (°C)      | 32.1         | 37           | 38.2         | 65.1         | 55.3         |
| Visual aspect                  | very Fluid   | Fluid        | Fluid        | Paste        | Solid        |
| Picture                        |              |              |              | $\bigcirc$   |              |
| Grinding Viscosity SC04-21(cP) | 142.5        | 405          | 585          | Not possible | Not possible |
| Grinding Particle size (nm)    | 380          | 380          | 380          |              |              |
|                                | 22YFPR254-06 | 22YFPR254-07 | 22YFPR254-08 | 22YFPR254-09 | 22YFPR254-05 |
| Solid content (%)              | 45           | 50           | 55           | 60           | 65           |
| Grinding temperature (°C)      | 33           | 36.5         | 56           | 30.5         | 70           |
| Visual aspect                  | very Fluid   | Fluid        | Paste        | Paste        | Solid        |
| Picture                        | $\bigcirc$   |              |              |              |              |
| Grinding Viscosity SC04-21(cP) | 342.5        | 892.5        | Not possible | Not possible | Not possible |
| Grinding Particle size (nm)    | 380          | 380          |              |              |              |



### **PR254 - Viscosity**

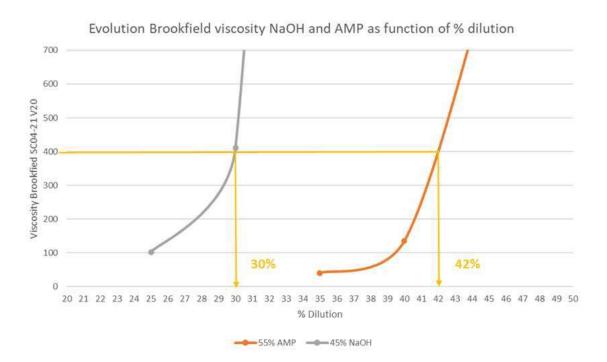

|                                     |               |     |              | Organic pigment grinding |       |       |       |     |     |           |       |       |  |
|-------------------------------------|---------------|-----|--------------|--------------------------|-------|-------|-------|-----|-----|-----------|-------|-------|--|
|                                     |               |     |              |                          | NaOH  |       |       |     |     | AMP-95    |       |       |  |
|                                     |               |     | %SC grinding |                          |       |       |       |     | %   | SC grindi | ng    |       |  |
|                                     |               |     | 45%          | 50%                      | 55%   | 60%   | 65%   | 45% | 50% | 55%       | 60%   | 65%   |  |
| <u> </u>                            | Ę             | 65% |              |                          |       |       | Paste |     |     |           |       | Paste |  |
| Dilution of<br>the WB<br>dispersion | sio           | 60% |              |                          |       | Paste | Paste |     |     |           | Paste | 477   |  |
| V I Si                              | dispersion    | 55% |              |                          | Paste | 312   | 332   |     |     | 585       | 232   | 237   |  |
| er v                                | - A. C. C. L. | 50% |              | 892                      | 170   | 155   | 182   |     | 405 |           | 115   | 125   |  |
| he he                               | MB            | 45% | 342          |                          | 95    | 92    | 90    | 142 |     |           | 65    | 60    |  |
| th<br>dis                           | %SC           | 40% |              |                          | 47    | 47    | 52    |     |     |           | 35    | 32    |  |
|                                     | %             | 35% |              |                          | 27    | 27    | 32    |     |     |           | 15    | 17    |  |

- All viscosities with the 50 / 50 AMP / Disperogen AN-200 blend are much more fluid
- The significant impact of AMP does not allow to compare grinding or dispersion at the same viscosity (i.e., with a similar shear rate during grinding)



### **Comparison of Tinting Strength**

To select the solid content during grinding, the aspect and the viscosity are monitored (55% with NaOH and 60% AMP). The selected **optimum solid content** for the dilution is set up to reach a similar final viscosity for the slurry.

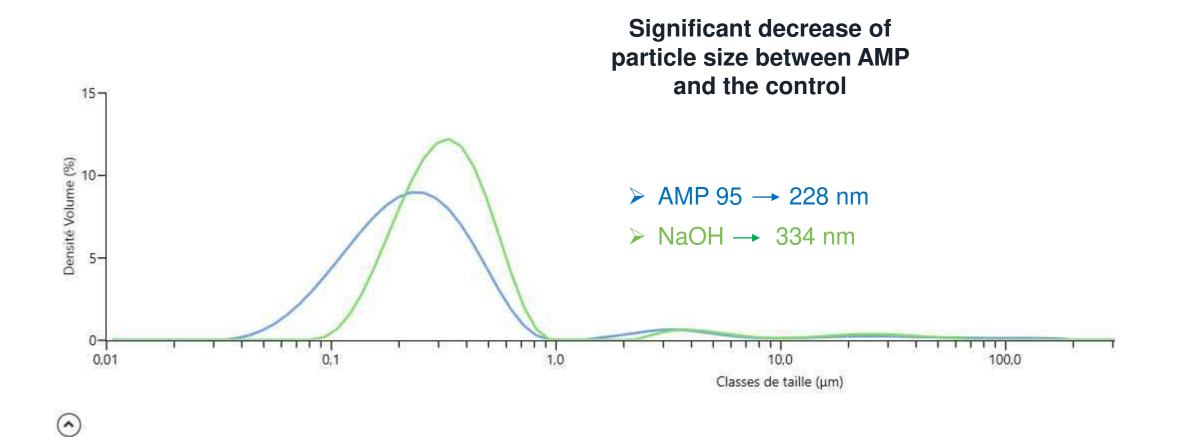





### **Comparison of Tinting Strength**

To select the solid content during grinding, the aspect and the viscosity are monitored (45% with NaOH and 55% AMP). The selected solid content for the dilution is set up to reach a similar final viscosity for the slurry.

|                   |     | 22YFPV23-07   | 22YFPV23-08          | 22YFPV23-09   | 22YFPV23-10   | 22YFPV23-01        | 22YFPV23-02        | 22YFPV23-03        | 22YFPV23-04         | 22YFPV23-05   | 22YFPV23-06         |
|-------------------|-----|---------------|----------------------|---------------|---------------|--------------------|--------------------|--------------------|---------------------|---------------|---------------------|
|                   |     | 35            | 40                   | 45            | 50            | 35                 | 40                 | 45                 | 50                  | 55            | 60                  |
|                   |     | 30.7<br>Fluid | 35.6<br>Fluid- paste | 65.4<br>Paste | 30.5<br>Paste | 30.8<br>very Fluid | 30.8<br>very Fluid | 32.4<br>very Fluid | 35.4<br>Fluid-paste | 70.6<br>Paste | 36.7<br>Paste-Solid |
|                   |     |               |                      |               | $\bigcirc$    |                    | $\bigcirc$         |                    | $\bigcirc$          | 0             | $\bigcirc$          |
|                   |     | 620           | Not possible         | Not possible  | Not possible  | 25                 | 72.5               | 250                | 3913                | Not possible  | Not possible        |
|                   |     | 250           | 200                  | Not possible  | Not possible  | 220                | 200                | 180                | 170                 | Not possible  | Not possible        |
|                   |     |               | Na                   | он            |               |                    |                    | AMF                | -95                 |               |                     |
|                   |     |               | %SC gr               | inding        |               | %SC grinding       |                    |                    |                     |               |                     |
|                   |     | 35%           | 40%                  | 45%           | 50%           | 35%                | 40%                | 45%                | 50%                 | 55%           | 60%                 |
|                   | 60% |               |                      |               |               |                    |                    |                    |                     |               | Paste               |
| ы.                | 55% |               |                      |               |               |                    |                    |                    |                     | Paste         | Paste               |
| ers               | 50% |               |                      |               | Paste         |                    |                    |                    | 3913                | Paste         | Paste               |
| %SC WB dispersion | 45% |               |                      | Paste         | Paste         |                    |                    | 250                |                     | 922           | 742                 |
| 80                | 40% |               | Paste                | Paste         | Paste         |                    | 72                 |                    |                     | 135           | 92                  |
| Š                 | 35% | 620           | 535                  | 4850          | 1160          | 25                 |                    |                    |                     | 40            | 35                  |
| %S                | 30% |               | 175                  | 410           | 342           |                    |                    |                    |                     |               | 12                  |
|                   | 25% |               | 45                   | 102           | 62            |                    |                    |                    |                     |               |                     |



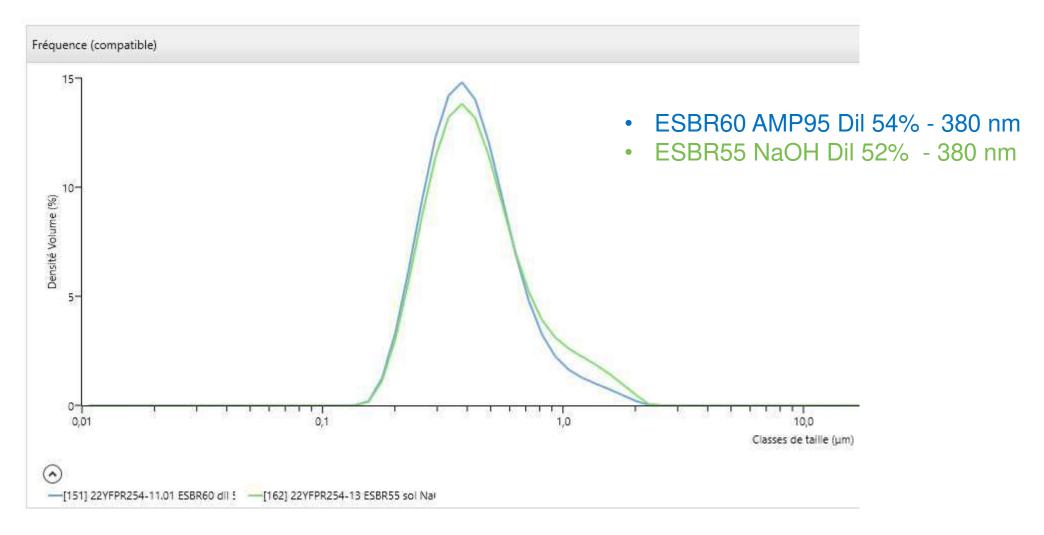



#### PR 122

### Waterborne Dispersion of PR 122: Grinding

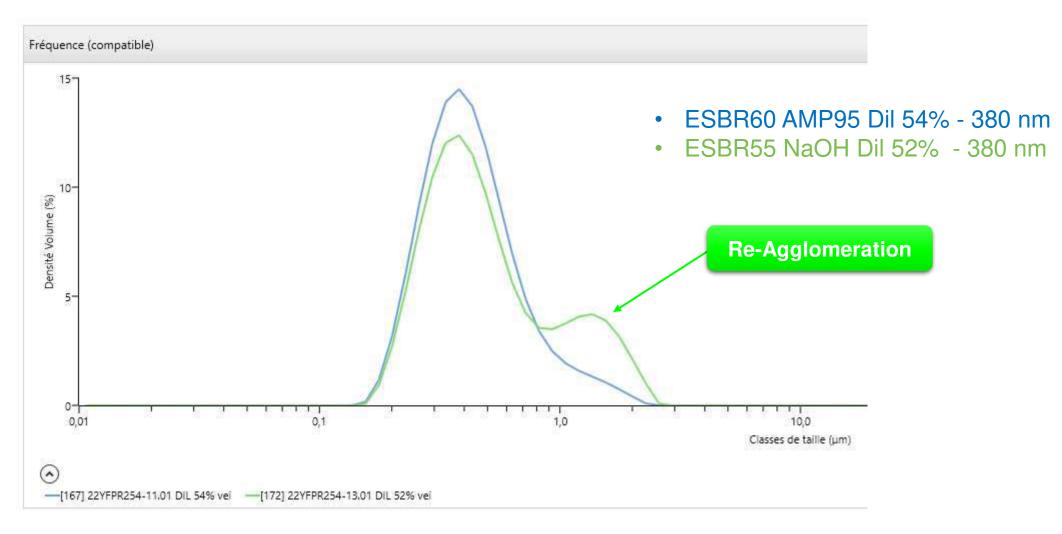
Measurement of Average Particle Size




#### **PR122 – Particle Size**

|                                |     |     | Organic pigment grinding |     |       |       |              |     |            |      |     |  |     |     |     |  |     |     |     |
|--------------------------------|-----|-----|--------------------------|-----|-------|-------|--------------|-----|------------|------|-----|--|-----|-----|-----|--|-----|-----|-----|
|                                |     |     | NaOH<br>%SC grinding     |     |       |       |              | AM  | P-95       |      |     |  |     |     |     |  |     |     |     |
|                                |     |     |                          |     |       |       | %SC grinding |     |            |      |     |  |     |     |     |  |     |     |     |
|                                |     |     | 40%                      | 45% | 50%   | 55%   | 40%          | 45% | 50%        | 55%  |     |  |     |     |     |  |     |     |     |
| -                              | E   | 50% |                          |     |       | paste |              |     |            | 140  |     |  |     |     |     |  |     |     |     |
| B<br>B<br>ion                  | sio | 45% |                          |     | paste | paste |              |     | 150        | 140  |     |  |     |     |     |  |     |     |     |
| si VE                          | ber | ber | ber                      | ber | ber   | ber   | ber          | per | dispersion | spei | 40% |  | 240 | 210 | 240 |  | 200 | 140 | 140 |
| ution<br>ne W                  |     | 35% | 270                      | 210 | 240   | 220   | 200          | 200 | 140        | 140  |     |  |     |     |     |  |     |     |     |
| lut<br>pe                      | WB  | 30% | 290                      | 220 | 200   | 260   | 200          | 200 | 140        | 140  |     |  |     |     |     |  |     |     |     |
| Dilution<br>the WI<br>dispersi | %SC | 25% | 320                      | 250 | 260   | 260   | 200          | 200 | 140        | 140  |     |  |     |     |     |  |     |     |     |
|                                | %   | 20% | 280                      | 300 | 250   | 240   | 200          | 200 | 140        | 150  |     |  |     |     |     |  |     |     |     |

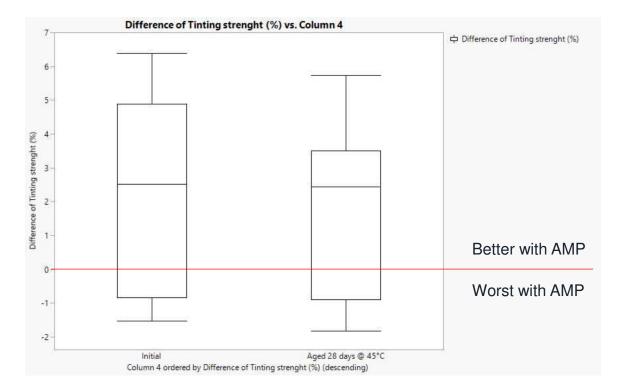
 Mean of particle size of PR122 waterborne dispersion is systematically lower in the presence of AMP




### Waterborne Dispersion of PR 254: Grinding

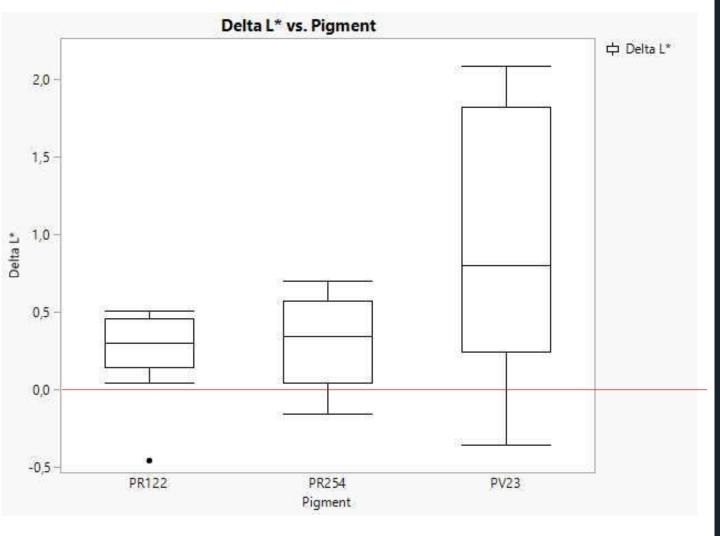





### Waterborne Dispersion of PR 254: Storage Stability






### **Tinting Efficiency with 8 Commercial Paints**

| Paint's reference    | Pigment | Time in days<br>(pigment<br>paste/paintstorage ) | Force K/S<br>(Max) (AMP-<br>NaOH) | Best coloring<br>strength with<br>AMP |
|----------------------|---------|--------------------------------------------------|-----------------------------------|---------------------------------------|
| V33                  | PR254   | Initial                                          | 96,24                             | +3,76%                                |
| ENVIE                | PR254   | Initial                                          | 94,74                             | +5,26%                                |
| INDEKO SENS<br>MAT   | PR254   | Initial                                          | 101,52                            | -1,52%                                |
| INDEKO MAT           | PR254   | Initial                                          | 101,35                            | -1,35%                                |
| INTER ACRYL<br>MAT   | PR254   | Initial                                          | 97,99                             | +2,01%                                |
| INTER ACRYL<br>SATIN | PR254   | Initial                                          | 93,62                             | +6,38%                                |
| INTERLAQUE<br>SATIN  | PR254   | Initial                                          | 99,31                             | +0,69%                                |
| INTERALKYDE<br>SATIN | PR254   | Initial                                          | 96,96                             | +3,04%                                |









# Confirmation with the comparison of Delta L\*

