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Smart coatings

* Wide use of polymers = Forced them to extend their service life and gain new functionalities

* Conventional engineering approach - Damage prevention ‘ _Damage_ 0
 Stronger material = Long lasting material Healng

Molecular Ievel

=

* Smart polymer approach - Damage management -
° Dealing W|th the da mage Source: Hager M.D.&Zec'hetl S.,Self-healing polymers: from

general basics to mechanistic aspects, Chapter 3.
or

* Providing the desired function to the material (depends on environment)
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Why smart coatings?

* Mimics the surface behavior in nature (biologically inspired materials)
 Self-healing, self-cleaning, hydrophilic/hydrophobic characteristics etc.

* Potential of forming functional or multifunctional surfaces / . o
. . . . p = i TG
* Autonomous mechanisms = Sustainable functionality | / / o [ y
.I !.:'lllr.' \ = - ; f
* Esteves C. et al. reported, ﬁ}{jﬁ == @M s f /‘
» Addition of PEG segments to PPG coating - iy
causes low friction and lubricity on surface? " - o i
Antifouling mechanisms Biocidal mechanisms

Source: Singha P, Locklin J., Handa H., Acta Biomaterialia, 2015.

* Eco-friendly & wide range of use in various industries
* Biomedical applications, paint industry, marine engineering etc.
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PU-based coatings

Di/Tri-isocyanate + Polyol = Polyurethane 4
: % Soft segments in
* |socyanate: Hard segments [ikyiitans hackere
* Long flexible polyol chains: Soft segments Source: RSCAdv., 2020,10,3029

|deal structures to attach dangling chains (availability of reactive ends -NCO, -OH)

Segmented structure + functional dangling chains + wide range of 7,
— Results in superior properties compared to conventional PU

Protective barrier by dangling chains = Keeps weathering/biological elements away
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Dual functional coatings with dangling chains

* The majority of PU coatings are hydrophobic
* Smart behaviour can be maintained by additional dangling chains
* Hydrophilic dangling chains (e.g., PEG) = Lubricious surface

In fact,
* Use of PEG in monofunctional PU coatings may cause swelling and loosening of network
- Solution: Combined use of hydrophilic and hydrophobic groups

e Dual chemical nature of hydrophilic and hydrophobic compound

- Promoting the migration of PEGs to surface: Benefiting from hydrophilic surface property
efficiently

—> Low friction on coating surface
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Molecular Simulations

* Solve Newton’s equation of motions
 fT=ma

* Predefined (semiempirical, empirical)
force fields to compute f!
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water
Continuum solvent model

Hydrophobic effect is roughly
proportional to surface area
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Method: Dissipative Particle Dynamics (DPD)

e Conventional DPD parameterization is appropriate for using similar bead sizes
* Chemical structures of polymers include various size of groups
- Preferred an alternative parameterization which allows different bead sizes

* Conservative, Random and Dissipative forces

FT = ma
e Cforce characterizes the equilibrium structure FT — FC + FR 4+ FP
 Rand D forces are coupled and act as a thermostat
* Hydrogen bonds in DPD? Ui s
fT = fC+ fR 4 fP + fMorse A\ ,
E =Dy [6_2""“‘_”’) —= 26_“&_?‘[’)} r<T, \Q: wr 0.0454(QiiPipure + %jPjpure) kT
Do(x) = Ey-bond(x) = Epotmix(X) = Epota — Epotw . e '! >
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Materials

Coarse-grained forms of molecules Two-step polymerization Cross-link conversion
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Modeling surface segregation of smart PU coatings at hydrophilic and
hydrophobic interfaces via coarse-grained molecular dynamics and
mesoscopic simulations

Deniz Kizilkaya ™', Hassan Ghermezcheshme ', Sepide Eslami Sabzevar ", Hesam Makki ™, :)f d an gl in g Ch ains are
Gokhan Kacar™ .
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ARTICLE INFO ABSTRACT ngling Chains to

Keywords: Developing adaptive coatings having desired functionalities at targeted interfaces is one of the major efforts in :e S ( hyd ro p h i | i C—Wate r
Smart coating the coatings science area. The adaptation of the surface functionality to the changing surface conditions can be 4

Palyurethane network maintained by introducing dangling chains with different properties to the cross-linked polymer coatings. In this H |
::f;;;ﬂm“:“ soshines work, we strive to investigate the change in interfacial morphology of PU coatings as exposed to hydrophilic -O I )
DPD simulation (HPI) and hydrophobic (HPB) interfaces by employing molecular simulations at the coarse-grained and meso-

scopic levels. The molecular structure and surface segregation dynamics are studied for PU coatings having pure

HPI, mixture of HPI and HPB, and amphiphilic dangling chains. The dual-scale simulations, Dissipative Particle

Dynamics (DPD) and MARTINI model, yield results about the dangling chain structures at the interface in terms

of their end-to-end distances, where HPI chains adopt a more extended conformation in water in comparison to

oil interfaces. The reverse is observed to be valid for the HPB chains. Regarding the dangling chain dynamics, a

swift migration towards the interfaces is noticed at about 10 ns for both of the simulation methods. The struc-

tures of the dangling chains and their interaction with the interfaces are also characterized by computing the

radial distribution function (RDF) profiles. Preferential interactions between the HPl/water and HPB/oil are

clearly noted. The switchability of the surfaces is also studied by simulating the system in cycles, such that the

interface is changed from water to oil and back to water. The migration of HPI groups in the dangling chains

2003-2023 towards water and vice versa in each cycle is clearly shown by the simulations. In all, the inherent structure and
. e dynamics of the dangling chains is obtained at the molecular level by the dual-scale molecular simulations. Our Ch M d '
\.,’ ‘ findings reveal a significant level of understanding about interfacial morphology of thermoset coatings modified r el ' I e Ia

BOYA SANAYICILERI DERNEGI by dangling chains, where the results can be extended to find applications in guiding the experimental studies. by Artkim Group
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Reverse-mapping (Coarse-grained = Atomistic)

* Obtaining atomistic
coordinates from DPD results
via reverse-mapping algorithm

- Computing mechanical
properties of PU coatings are

mPEG from all atom MD simulations
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Uniaxial tensile test on bulk PU

» Stretching the bulk at a constant rate in x-direction
X e Strain rate: 107 1/fs

MmPEG

ChemMedia

by Artkim Group

BOSAD ¢

BOYA SANAYICILERI DERNEGI
THE ASSOCIATION OF PAINT INDUSTRY

CONGRESS



Elastic modulus and strain rate effect

02 mPEG E Modulus — Mix E Modulus
= Strain Rate | Stress Nl —_— W’M Strain Rate | Stress
(s?) (GPa) A * L <) i
1 d #, 107 1.6175 ; w i \h)w ww L PP 1.1192
’ 10° 1.4186 B )ﬁ I W 10° 0.9654
ww A
005 |- 108 0.6789 o0s |- L 108 0.6237
0 | 106 0.0522 o 106 0.0482
e Elastic modulus computed from uniaxial deformation of bulk polymers
* According to Modi and Karttunen 103/s for polymers
https://doi.org/10.3390/ nano12193379
* Lower elastic modulus with more rigid Mix system
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Poisson’s ratio

* Poisson’s ratio computed from uniaxial deformation of bulk polymers ¥

* Poisson's ratio (v) is the deformation of a material perpendicular to the loading direction

—> Negative ratio of transverse strain to axial strain {
A
mPEG mix > X
0.29298 0.33491
g dEtrans . dE}’ . dEz
dEaxial dEX dEX

* Lower Poisson's ratio with less complex mPEG system

e Poisson's ratio
e transverse strain
e axial strain
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Glass transition temperature (Tg)

mPEG Mix

T,=298.45 K
T,=284.61K

1 L 1 i 1 L L L | 1 1 U 65 1 L 1 I 1 I 1 i 1
100 200 300 400 500 600 100 200 300 400 500
Temperature Temperature

* Lower T, in more rigid Mix system
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Coefficient of Thermal Expansion (CTE)

mPEG Mix
VO: 0.4799 m3 Vo: 0.4667 m3
CET: 0.3256/0.4799 = 0.6783 CET: 0.3391/0.4667 = 0.7265

= The slope in the temperature range 100-275 K was used for CTE = below T,
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Current: Modelling of wettability beh

Box size: 106.263 A x 106.263 A x 42.5052 A

water

Box size: 40 Ax 40 A x 30 A
SPC/E water model

intistanbul
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Summary

* jn silico description of polyurethane coatings with proper chemical nature
* Equilibrated cross-linked structure at molecular scale realized

* Reverse-mapped coordinates result in all-atom structure

 Mechanical and thermodynamic properties estimated

e Estimating surface properties (e.g. tension, adhesion strength) on the go

* Experimental verification needed

 Remove pull-test strain rate effect?

* Develop approaches for better simulation-experiment comparison
* Automated computational coatings design
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mpeg system
Strain Rate: 10 1/fs
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mix system
~Strain Rate: 105 1/fs | Strain Rate: 106 1/fs
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Computed Elastic Modulus for mPEG in
Different Dragging Directions

* To assess isotropic behavior, we deformed the polyurethane sample in the x, y, and z directions.

* |sotropic behavior implies consistent material response, regardless of the direction of
deformation.

MmPEG E Modulus

Strain Rate (1/fs) Drag-x Drag-y Drag-z

103 1.6175 2.4643 1.7195

106 1.4186 1.2077 1.2538

107 0.6789 0.6321 0.8328
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Removing strain rate dependency

PU Systems | E Modulus (GPa)
LTI 0.33802213
IV 0.36906218

a |74
E = o7 (&~ (€))%
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